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Grammars 

 Describes underlying rules (syntax) of 
programming languages 
 Compilers (parsers) are based on such 

descriptions 

 More expressive than regular 
expressions/finite automata 

 Context-free grammar (CFG) or just 
grammar 



Definition 

A grammar is a 4-tuple G = (V,T,P,S) 

 V:  set of variables or nonterminals 

 T:  set of terminal symbols (terminals) 

 P:  set of productions 
 Each production: head  body, where 

head is a variable, and body is a string of 
zero or more terminals and variables 

 S:  a start symbol from V 



Example 1: 
Assignment statements 

 V = { S, E }, T = { i, =, +, *, n } 

 Productions: 
S  i = E 
E  n 
E  i 
E  E + E 
E  E * E 

This grammar 
represents strings 
such as: 
i = n + n 
i = n * i + i + n * n 



Example 2:  Palindromes 

 V = { S }, T = { a, b } 

 Productions: 
S   
S  a 
S  b 
S  aSa 
S  bSb 

This grammar 
represents strings 
such as: 
a 
baab 
babab 
abaaabaaaba 
 



Example 3:  0n1n 

 V = { S }, T = { 0, 1 } 

 Productions: 
S   
S  0S1 
 

This grammar 
represents strings 
such as: 
0011 
000111 
01 
 



Derivation of strings 

 Applying productions:  replace variable 
(head) with corresponding string (body) 

 Example:  to derive i = n + n in for the 
assignment statement grammar: 
S  i = E  i = E + E 
 i = E + n  i = n + n 

 Above derivation was carried out through 
four applications of the productions: 
S  i = E, E  E + E, E  n, E  n 



L(G): Language of a grammar 

 Definition:  Given a grammar G, and a 
string w over the alphabet T, S *

G  w 
if there is a sequence of productions 
that derive w 

 L(G) = { w in T* | S *
G  w }, 

the language of the grammar G 
 



Leftmost vs rightmost derivations 

 Leftmost derivation:  the leftmost 
variable is always the one replaced 
when applying a production 
 Example:  S  i = E  i = E + E 
 i = n + E  i = n + n 

 Rightmost derivation: rightmost variable 
is replaced 
 Example: S  i = E  i = E + E 
 i = E + n  i = n + n 



Context-free languages 

 A language generated by a grammar is called 
a context-free language 

 The set of regular languages is a subset of 
the set of context-free languages 

 Proof? 

 Some languages are context-free, but not 
regular 

 e.g., palindromes (proven not regular through the 
pumping lemma) 



Grammar 

Productions of the form: 

xA
String of variables  

and terminals 
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Definition: Context-Free Grammars 



► Represents the language using an ordered rooted 
tree. 

 

► Root represents the starting symbol. 

► Internal vertices represent the nonterminal symbol 
that arise in the production. 

► Leaves represent the terminal symbols. 

 

► If the production A → w arise in the derivation, 

where w is a word, the vertex that represents A has 
as children vertices that represent each symbol in 
w, in order from left to right. 

 

Derivation Tree of A Context-free Grammar 



Language Generated by a 
Grammar 

 Example: Let G = ({S,A,a,b},{a,b}, S, 
{S → aA, S → b, A → aa}).  What is 

L(G)? 

 Easy: We can just draw a tree 
of all possible derivations. 

 We have: S  aA  aaa. 

 and S  b. 

 Answer: L = {aaa, b}. 

S 

aA b 

aaa 
Example of a 

derivation tree 

or parse tree  

or sentence  

diagram. 



► Let G be a context-free grammar with the productions         
P = {S →aAB, A →Bba, B →bB, B →c}. The word w = 

acbabc can be derived from S as follows:  

  S ⇒ aAB →a(Bba)B ⇒ acbaB ⇒ acba(bB) ⇒ acbabc 

 Thus, the derivation tree is given as follows: 

 S 

a A B 

B b a 

c 

b B 

c 

Example: Derivation Tree 


