
Grammars

By Dr. Fathy

Grammars

 Describes underlying rules (syntax) of
programming languages
 Compilers (parsers) are based on such

descriptions

 More expressive than regular
expressions/finite automata

 Context-free grammar (CFG) or just
grammar

Definition

A grammar is a 4-tuple G = (V,T,P,S)

 V: set of variables or nonterminals

 T: set of terminal symbols (terminals)

 P: set of productions
 Each production: head  body, where

head is a variable, and body is a string of
zero or more terminals and variables

 S: a start symbol from V

Example 1:
Assignment statements

 V = { S, E }, T = { i, =, +, *, n }

 Productions:
S  i = E
E  n
E  i
E  E + E
E  E * E

This grammar
represents strings
such as:
i = n + n
i = n * i + i + n * n

Example 2: Palindromes

 V = { S }, T = { a, b }

 Productions:
S  
S  a
S  b
S  aSa
S  bSb

This grammar
represents strings
such as:
a
baab
babab
abaaabaaaba


Example 3: 0n1n

 V = { S }, T = { 0, 1 }

 Productions:
S  
S  0S1

This grammar
represents strings
such as:
0011
000111
01


Derivation of strings

 Applying productions: replace variable
(head) with corresponding string (body)

 Example: to derive i = n + n in for the
assignment statement grammar:
S  i = E  i = E + E
 i = E + n  i = n + n

 Above derivation was carried out through
four applications of the productions:
S  i = E, E  E + E, E  n, E  n

L(G): Language of a grammar

 Definition: Given a grammar G, and a
string w over the alphabet T, S *

G w
if there is a sequence of productions
that derive w

 L(G) = { w in T* | S *
G w },

the language of the grammar G

Leftmost vs rightmost derivations

 Leftmost derivation: the leftmost
variable is always the one replaced
when applying a production
 Example: S  i = E  i = E + E
 i = n + E  i = n + n

 Rightmost derivation: rightmost variable
is replaced
 Example: S  i = E  i = E + E
 i = E + n  i = n + n

Context-free languages

 A language generated by a grammar is called
a context-free language

 The set of regular languages is a subset of
the set of context-free languages

 Proof?

 Some languages are context-free, but not
regular

 e.g., palindromes (proven not regular through the
pumping lemma)

Grammar

Productions of the form:

xA
String of variables

and terminals

),,,(PSTVG 

Variables Terminal

symbols

Start

variable

Non-Terminal

Definition: Context-Free Grammars

► Represents the language using an ordered rooted
tree.

► Root represents the starting symbol.

► Internal vertices represent the nonterminal symbol
that arise in the production.

► Leaves represent the terminal symbols.

► If the production A → w arise in the derivation,

where w is a word, the vertex that represents A has
as children vertices that represent each symbol in
w, in order from left to right.

Derivation Tree of A Context-free Grammar

Language Generated by a
Grammar

 Example: Let G = ({S,A,a,b},{a,b}, S,
{S → aA, S → b, A → aa}). What is

L(G)?

 Easy: We can just draw a tree
of all possible derivations.

 We have: S  aA  aaa.

 and S  b.

 Answer: L = {aaa, b}.

S

aA b

aaa
Example of a

derivation tree

or parse tree

or sentence

diagram.

► Let G be a context-free grammar with the productions
P = {S →aAB, A →Bba, B →bB, B →c}. The word w =

acbabc can be derived from S as follows:

 S ⇒ aAB →a(Bba)B ⇒ acbaB ⇒ acba(bB) ⇒ acbabc

 Thus, the derivation tree is given as follows:

 S

a A B

B b a

c

b B

c

Example: Derivation Tree

