

By Dr. Fathy

Grammars

- Describes underlying rules (syntax) of programming languages
 - Compilers (parsers) are based on such descriptions
- More expressive than regular expressions/finite automata
- Context-free grammar (CFG) or just grammar

Definition

- A grammar is a 4-tuple G = (V,T,P,S)
- V: set of variables or nonterminals
- T: set of terminal symbols (terminals)
- P: set of productions
 - Each production: head → body, where head is a variable, and body is a string of zero or more terminals and variables
- S: a start symbol from V

Example 1: Assignment statements

- V = { S, E }, T = { i, =, +, *, n }
- Productions:
 - $S \rightarrow i = E$
 - $E \rightarrow n$

 $E \rightarrow E + E$

 $E \rightarrow E * E$

This grammar represents strings such as: i = n + n

$$i = n * i + i + n * n$$

Example 2: Palindromes

- V = { S }, T = { a, b }
- Productions:
 - $S \rightarrow \varepsilon$
 - $S \rightarrow a$
 - $S \rightarrow b$
 - $S \rightarrow aSa$
 - $S \rightarrow bSb$

This grammar represents strings such as: a baab babab abaabaaaba ε

Example 3: 0ⁿ1ⁿ

- V = { S }, T = { 0, 1 }
- Productions:

$$S \rightarrow \varepsilon$$

 $S \rightarrow 0S1$

This grammar represents strings such as: 0011 000111 01 ε

Derivation of strings

- Applying productions: replace variable (head) with corresponding string (body)
- Example: to derive i = n + n in for the assignment statement grammar: $S \Rightarrow i = E \Rightarrow i = E + E$

 $\Rightarrow i = E + n \Rightarrow i = n + n$

 Above derivation was carried out through four applications of the productions:
S → i = E, E → E + E, E → n, E → n

L(G): Language of a grammar

- Definition: Given a grammar G, and a string w over the alphabet T, S \Rightarrow^*_G w if there is a sequence of productions that derive w
- L(G) = { w in T* | S \Rightarrow^*_G w }, the language of the grammar G

Leftmost vs rightmost derivations

 Leftmost derivation: the leftmost variable is always the one replaced when applying a production

• Example:
$$S \Rightarrow i = E \Rightarrow i = E + E$$

 $\Rightarrow i = n + E \Rightarrow i = n + n$

- Rightmost derivation: rightmost variable is replaced
 - Example: $S \Rightarrow i = E \Rightarrow i = E + E$ $\Rightarrow i = E + n \Rightarrow i = n + n$

Context-free languages

- A language generated by a grammar is called a context-free language
- The set of regular languages is a subset of the set of context-free languages
 - Proof?
- Some languages are context-free, but not regular
 - e.g., palindromes (proven not regular through the pumping lemma)

Derivation Tree of A Context-free Grammar
Represents the language using an ordered rooted tree.

- Root represents the starting symbol.
- Internal vertices represent the nonterminal symbol that arise in the production.
- Leaves represent the terminal symbols.
- If the production A → w arise in the derivation, where w is a word, the vertex that represents A has as children vertices that represent each symbol in w, in order from left to right.

Language Generated by a Grammar

- Example: Let $G = (\{S, A, a, b\}, \{a, b\}, S, \{S \rightarrow aA, S \rightarrow b, A \rightarrow aa\})$. What is L(G)?
- Easy: We can just draw a tree of all possible derivations.
 - We have: $S \Rightarrow aA \Rightarrow aaa$.

• and $S \Rightarrow b$.

Answer: L = { aaa, b}.

Example of a *derivation tree* or *parse tree* or *sentence diagram.*

aaa

Example: Derivation Tree

Let G be a context-free grammar with the productions $P = \{S \rightarrow aAB, A \rightarrow Bba, B \rightarrow bB, B \rightarrow c\}$. The word w = acbabc can be derived from S as follows:

 $S \Rightarrow aAB \rightarrow a(Bba)B \Rightarrow acbaB \Rightarrow acba(bB) \Rightarrow acbabc$

Thus, the derivation tree is given as follows:

